

3196 i-FRAME®

ANSI Process Pump

Proven Performance

Over One Million Process
Pump Installations Worldwide

When the 3196 ANSI Standard Dimension Process Pump , it immediately became the standard for the industry.

Before Selecting A Process Pump

Consider the Four Design Features For Extended Pump Performance

In order to select a chemical process pump wisely, consideration must be given to design features that provide long-term reliable performance. The pump must be designed for optimum shaft seal and bearing life to prevent the failure of these two primary causes of pump downtime.

① Impeller

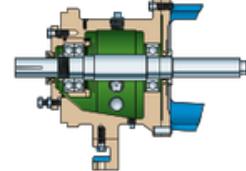
Must be designed for long-term, maintainable performance and minimum hydraulic loads for maximum reliability.

② Seal Chamber

Must be designed for favorable seal environment – proper heat dissipation and lubrication of seal faces. The design must also be able to handle tough services: liquids containing solids, air or vapors.

FULLY OPEN IMPELLER

Best design for the Chemical Process Industries services. Ideally suited for corrosives and abrasives, handles solids and stringy fibers with ease. Allows for simple restoration of clearances when wear takes place. Back pump-out vanes reduce pressure on the shaft seal, reduce axial thrust on the bearings.


ENGINEERED SEAL CHAMBERS

BigBore™ and TaperBore™ PLUS seal chambers allow seals to run cooler with better face lubrication. Keep solids, air and vapors away from the seal faces for extended seal life.

i-FRAME® POWER ENDS

Patented design maximizes reliability and Mean Time Between Failure (MTBF). Severe-duty bearings increase bearing life 2-5 times, while onboard condition monitor gives visible indication of general pump health. Backed by a five-year standard warranty.

PUMP MOUNTING SYSTEM

Critical for reliability ... rigid baseplate prevents distortion, maintaining pump/motor alignment, corrosion resistant in severe environments. Designed for low vibration and to withstand pipe loads. Meets total range of plant requirements, easier installation and maintenance.

③ Power End

Must be designed for optimum bearing life, effective oil cooling, and minimum shaft deflection. Onboard condition monitoring provides early warning of potential failures, before they occur.

④ Baseplate

Must be rigid, and able to withstand forces and moments of plant piping systems.

Fully Open Impeller

Acknowledged Best Design for CPI Services

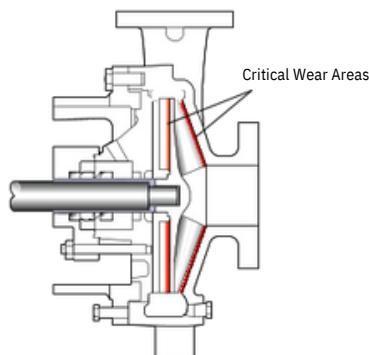
The open impeller is the acknowledged best design for process services. It is ideally suited for corrosive/erodic liquids containing solids and stringy materials. The most reliable pumps feature open impellers as standard.

See The Difference

had performance in mind when the Model 3196 standard dimension process pump was developed in 1959. Of timely significance was the decision to feature a fully open impeller rather than an enclosed type. There are three excellent reasons why:

- Greater wear area for longer life
- Renewable performance for reduced repair costs
- Minimum hydraulic loads for maximum mechanical reliability

Open Impeller Enclosed-type Impeller


1. Two Times More Wear Area

Longer Life, Reduced Repair Costs

The most critical wear areas of a pump are the casing and stuffing box/seal chamber clearances. At a given wear rate, the larger wear area means longer life.

Open Impeller

Wear is uniform throughout larger area; no concentrated wear... extended life, reduced repair part cost.

Wear Area Calculation (10 inch dia. impeller)

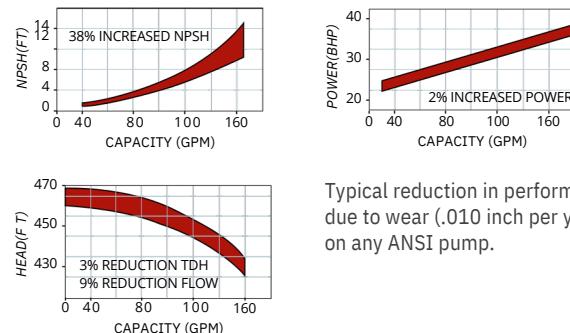
$$\text{Area Wear Surface} = \pi r^2 = \pi(5)^2 = 79 \text{ in}^2$$

$$\text{Total Wear Area (Front & Back)} = 2 \times 79 = 158 \text{ in}^2$$

Enclosed Type Impeller

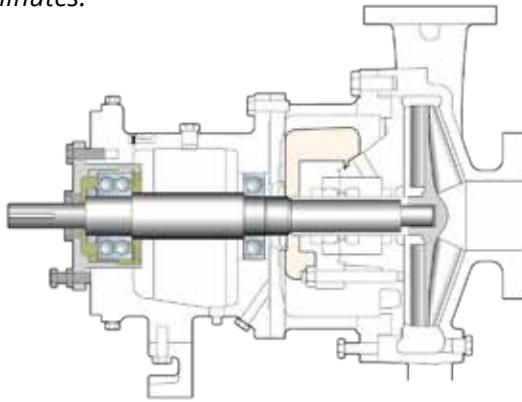
Less wear area with concentrated wear at nose of impeller ... higher repair part cost.

$$\text{Area Nose Ring} = 2\pi r W = 2 \times \pi \times (.9) (.9) = 5 \text{ in}^2$$

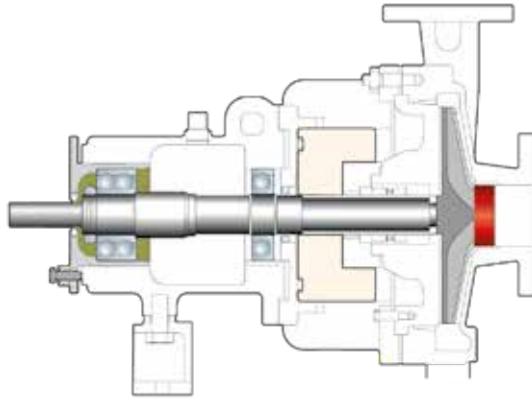

$$\text{Area Back Cover} = \pi r^2 = \pi(5)^2 = 79 \text{ in}^2$$

$$\text{Total Wear Area} = 5 + 79 = 84 \text{ in}^2$$

2. Maintained High-Performance


Long Pump Life

It is common knowledge that as a pump wears, the performance decreases. Goulds open impeller can be adjusted, simply and quickly, to compensate for wear and renew performance. The enclosed type impeller cannot be adjusted. Performance renewal requires new or repaired casing and impeller.


Open Impeller

Original performance can be re-set (at the bench or on-site) with external impeller adjustment using a common open-end wrench and feeler gauge. *It is done in a matter of minutes.*

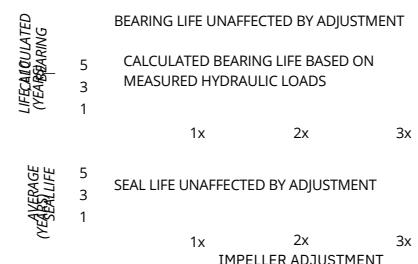
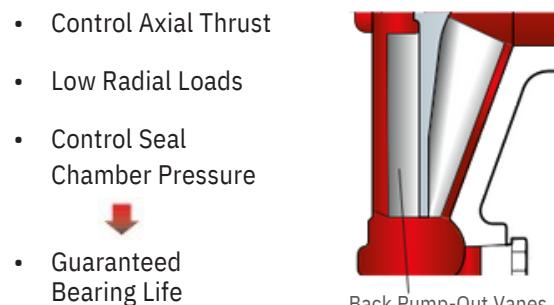
Enclosed Type Impeller

Front nose ring of impeller cannot be adjusted to provide 'as new' performance. Parts must be replaced or repaired.

3. Minimum Hydraulic Loads

Extended Seal and Bearing Life

Goulds open impeller is engineered to assure minimum radial and axial thrust loads; controlled clearances between front and back of impeller minimize radial loads; back pump-out vanes control and reduce axial thrust. Bearing life is guaranteed.



Engineered For Long Life

Back vane height/angle and shroud design are engineered to minimize hydraulic loads throughout the life of the pump. Bearing life is guaranteed.

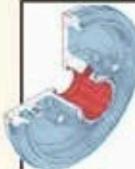
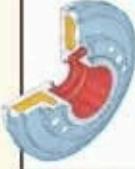
As the open impeller is adjusted and performance renewed, back pump-out vanes control axial thrust.

Bearing and seal life are maintained — unaffected by adjustment.

- Control Axial Thrust
- Low Radial Loads
- Control Seal Chamber Pressure
- Guaranteed Bearing Life
- Extended Seal Life

Goulds Engineered Seal Chambers

Extend Seal Life And Lower Maintenance Costs



Seal Environment is Critical for Extended Seal Life

The number one cause of pump downtime is failure of the shaft seal. These failures are normally the result of an unfavorable seal environment such as improper heat dissipation (cooling), poor lubrication of the seal faces, or seals operating in liquids containing solids, air or vapors.

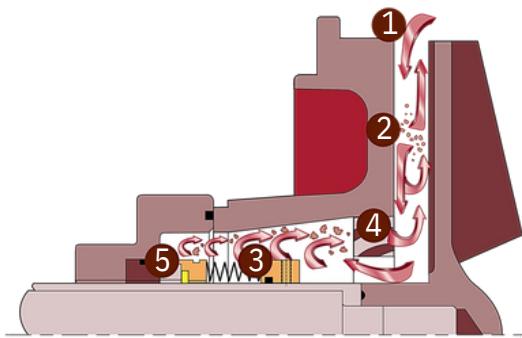
Goulds engineered seal chambers are designed to provide the best seal environment for any sealing arrangement.

Enlargedbore sealchambers (BigBore™ and TaperBore® PLUS) with increased radial clearance between the mechanical seal and seal chamber provide better circulation of liquid to and from seal faces. Improved lubrication and heat removal extend seal life and pump uptime. The bottom line is lower maintenance costs.

Engineered Seal Chamber Selection Guide

	Service												
	Water-Based Liquids with Flush	Entrained Air or Vapor	Solids 0-10%, no Flush	Solids Greater than 10% with Flush	Paper Stock 0-5%, no Flush	Paper Stock 0-5%, with Flush	Slurries 0-5%, no Flush	High Boiling Point Liquids, no Flush	Temperature Control	Self-Venting and Draining	Seal Face Heat Removal	Molten or Polymerized Liquid, no Flush	Molten or Polymerized Liquid with Flush
A	Ideally suited	B	Acceptable	C	Not Recommended								
	Standard Bore Designed for packing. Also accommodates mechanical seals.	A	C	C	B	C	B	C	C	C	C	C	C
	BigBore™ Enlarged chamber for increased seal life through improved lubrication and cooling.	A	B	C	A	C	A	C	C	B	A	C	C
	Patented TaperBore™ PLUS Lower seal face temperatures, self-venting and draining. Solids and vapors circulated away from seal faces.	A	A	A	C	A	—	A	A	C	A	A	C
	Jacketed Patented TaperBore™ PLUS Maintains proper temperature control (heating or cooling) of seal environment.	A	A	A	C	—	—	A	A	A	A	A	A
	Jacketed BigBore™ Maintains proper temperature control (heating or cooling) of seal environment.	A	B	C	A	—	—	C	C	A	C	A	A

Goulds 3196 i-FRAME®


Goulds Dynamic Seal

Goulds TaperBore® PLUS

How it Works

The unique flow path created by the Vane Particle Ejector directs solids away from the mechanical seal, not towards the seal as with other tapered bore designs. And, the amount of solids entering the bore is minimized. Air and vapors are also efficiently removed.

On services with or without solids, air or vapors, Goulds Pumps TaperBore® PLUS is the effective solution for extended seal and pump life and lower maintenance costs.

- 1 Solids/liquid mixture flows toward mechanical seal / seal chamber.
- 2 Turbulent zone. Some solids continue to flow toward shaft. Other solids are forced back out by centrifugal force (generated by back pump-out vanes).
- 3 Clear liquid continues to move toward mechanical seal faces. Solids, air, vapors flow away from seal.
- 4 Enhanced streamline created by Vane Particle Ejector. Solids, air, vapor liquid mixture exit seal chamber bore.
- 5 Flow in TaperBore® PLUS seal chamber assures efficient heat removal (cooling) and lubrication. Seal face heat is dissipated. Seal faces are continuously flushed with clean liquid.

Benefits of Dynamic Seal:

- Eliminate use of seal water
- Eliminate pumpage contamination and product dilution
- Reduce utility cost
- Eliminate problems associated with piping from a remote source
- Eliminate need to treat seal water
- Considerably less expensive than a slurry mechanical seal

Stuffing Box Cover

Repeller

Repeller Plate

Besides being available as a complete unit, any Goulds 3196 can be easily field-converted to Dynamic Seal. Retrofit kits are available.

Eliminate Sealing Problems, Reduce Maintenance Costs

On tough pumping services, especially corrosives and slurries, mechanical seals require outside flush and constant, costly attention. Even then, seal failures are common, resulting in downtime.

Goulds Pumps offers a solution: The Dynamic Seal which, simply by fitting a repeller between the stuffing box cover and impeller, eliminates the need for a mechanical seal.

3196 i-FRAME® Process Pumps

CONTINUOUS PERFORMANCE

Original flow, pressure and efficiency are maintained by simple external adjustment resulting in long-term energy and repair part savings.

DUCTILE IRON FRAME ADAPTER

Material strength equal to carbon steel for safety and reliability.

PREMIUM SEVERE-DUTY THRUST BEARINGS

Premium bearings using improved tolerances and cleaner steel provide reduced assembled runout and longer bearing life.

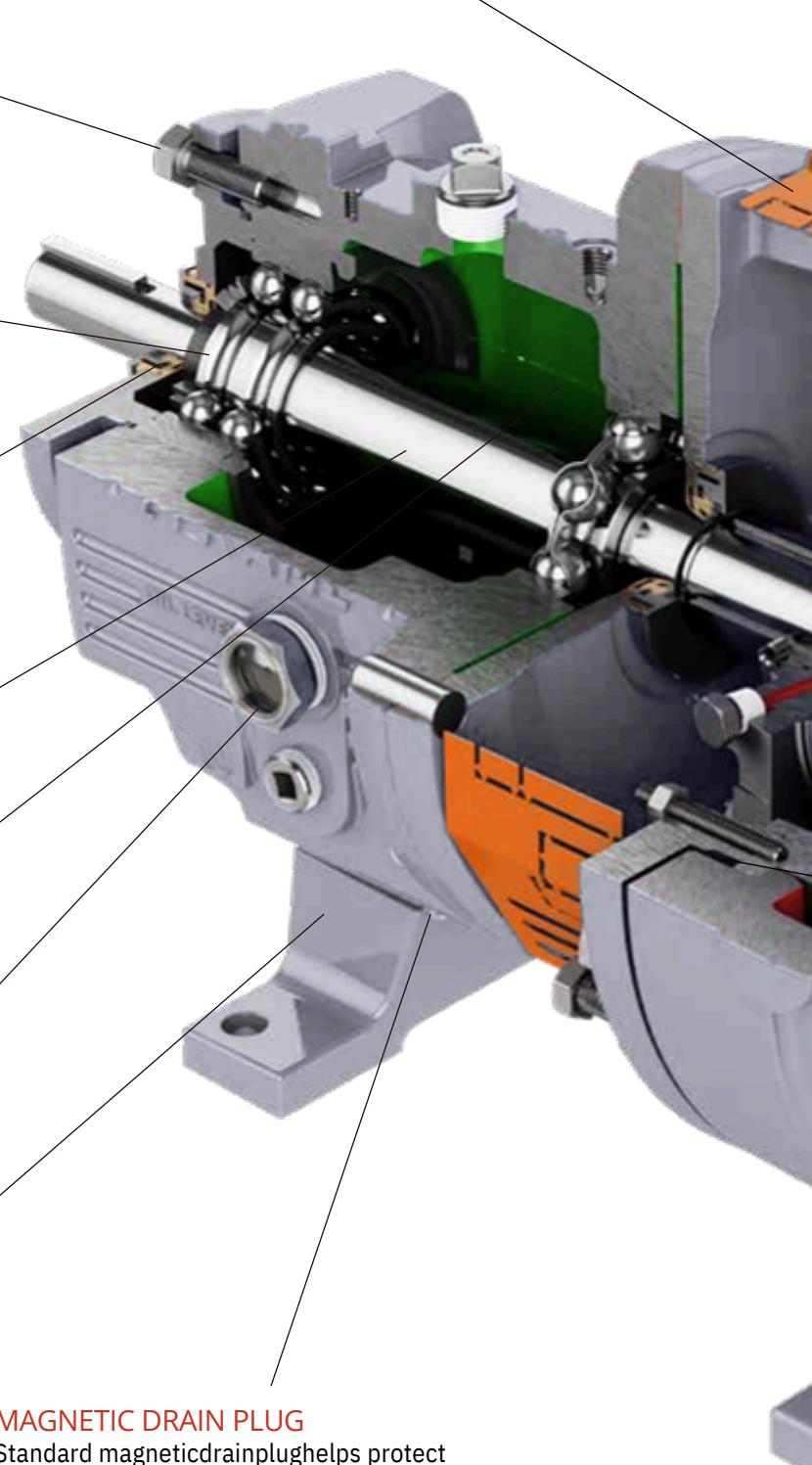
INPRO VBXX-D HYBRID LABYRINTH SEALS

Prevents premature bearing failure caused by lubricant contamination or loss of oil. Stainless steel rotors for optimal performance in corrosive environments.

HEAVY DUTY SHAFT AND BEARINGS

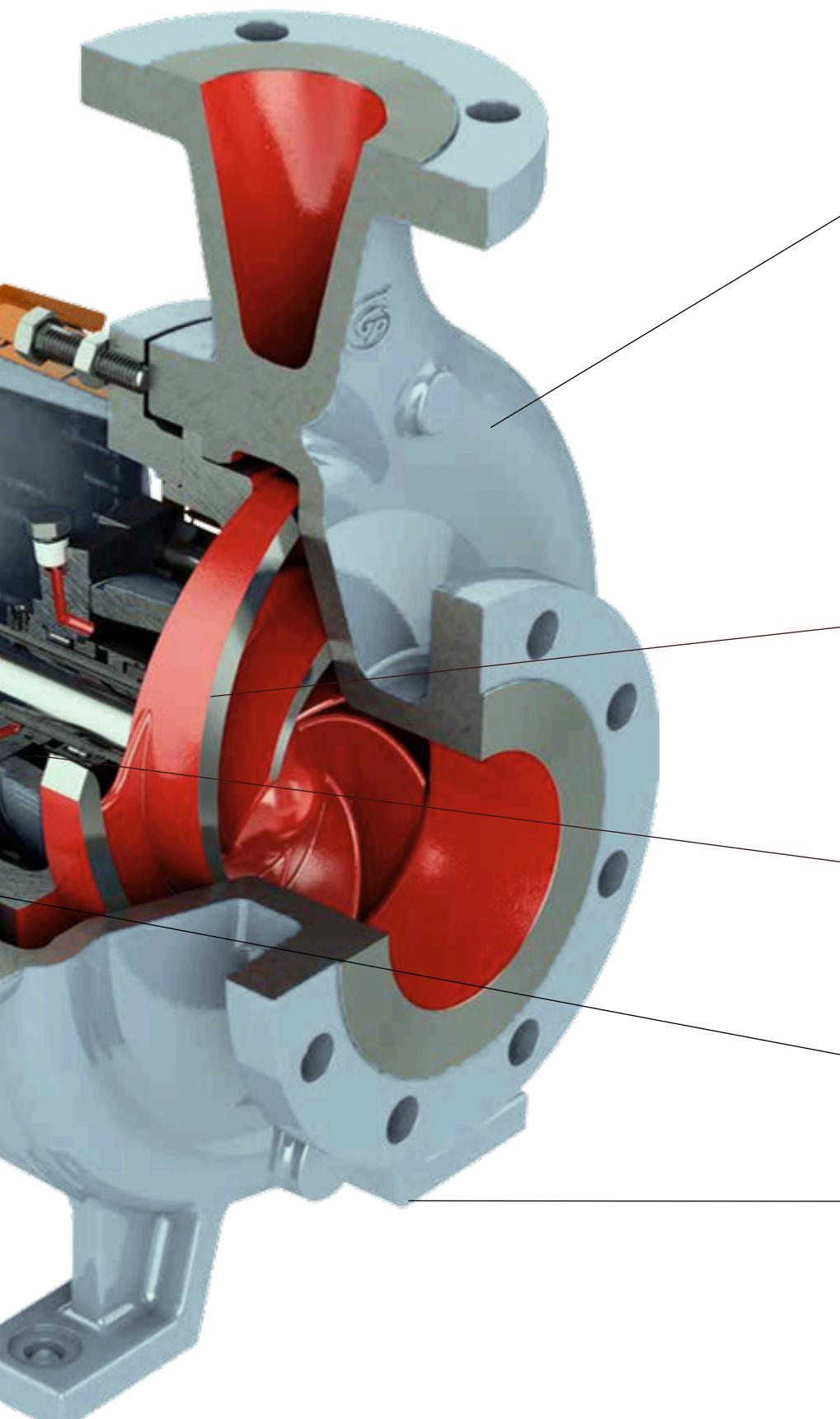
Rigid shaft designed for minimum deflection at seal faces—less than 0.002 in. (.05 mm). Bearings sized for 10-year average life under tough operating conditions. Available with or without shaft sleeve.

OPTIMIZED OIL SUMP DESIGN


Increased oil capacity provides better heat transfer for reduced oil temperature. Bearings run cooler and last longer. Contaminants directed away from bearings to magnetic drain plug.

ONE - INCH BULL'S EYE SIGHT GLASS

Assures proper oil level critical to bearing life. Can be mounted on either side of pump for installation flexibility.


i-FRAME® POWER END

Designed for reliability and extended pump life, backed with a 5-year warranty.

MAGNETIC DRAIN PLUG

Standard magnetic drain plug helps protect bearings and prolong life.

CASING

- Bonus casing thickness: Class 150 pumps feature Class 300 wall thickness as standard; increased reliability and maximized casing life.
- Top centerline discharge for air handling, self-venting.
- Back pull-out design for ease of maintenance.
- Integral casing feet prevent pipe load misalignment—maximized seal and bearing life.
- Serrated flanges standard for positive sealing against leakage. Meets ANSI B16.5 requirements. Class 150 FF flanges standard, optional Class 150 RF, 300 FF/RF.

FULLY OPEN IMPELLER

Acknowledged best design for CPI services – solids handling, stringy material, corrosives, abrasives. Two times the wear area of closed-type impellers for longer life. Back pump-out vanes reduce radial thrust loads and seal chamber pressure.

SEALING FLEXIBILITY

Wide range of sealing arrangements available to meet service conditions. Engineered seal chambers improve lubrication and heat removal (cooling) of seal faces for extended seal life and pump uptime.

POSITIVE SEALING

Fully confined gasket at casing joint protects alignment fit from liquid, makes disassembly easier.

RIGID FRAME (AND CASING) FEET

Reduce effects of pipeline loads on shaft alignment; pump vibration reduced.

Baseplate Mounting Systems

Pumps offers a complete range of pump mounting systems to meet plant requirements; make installation and maintenance easier.

Baseplate Selection Guide	CAMBER TOP CAST IRON	CHEMBASE PLUS™	FABRICATED STEEL	ENHANCED FEATURE FABRICATED STEEL	ADVANTAGE	POLYSHIELD ANSI COMBO
PLANT REQUIREMENTS						
Corrosion Resistance (mild/moderate)						
Corrosion Resistance (severe)						
Machined Pump & Motor Parts						
Circular Grout Holes (4 in. min.)						
Vent Holes (1 in. min.)						
Vent Holes (1/2 in. min.)						
Non-Overhang						
Full Drain Rim						
Built-in Drain Pan (under pump)						
Drain Pan Under Pump						
Baseplate Leveling Screws						
Motor Alignment Adjusters						
Lifting Feature						
Continuous Welding Used						
Flexibly Mounted						
Spring Loaded*						
Available in 304 and 316 SS						
ANSI B73.1-1991 Conformance						
API-610 Conformance						
PIP RESP 002 Conformance						

STANDARD

OPTIONAL

*Engineered option—requires special baseplate

Bonus Interchangeability i-FRAME Power Ends Fit 7 Different Process Pumps

Minimize inventory, reduce downtime.

3196 i-FRAME
Process Pumps

CV 3196 i-FRAME
Non-Clog
Process Pumps

HT 3196 i-FRAME
High Temperature
Process Pumps

LF 3196 i-FRAME
Low Flow ANSI
Process Pumps

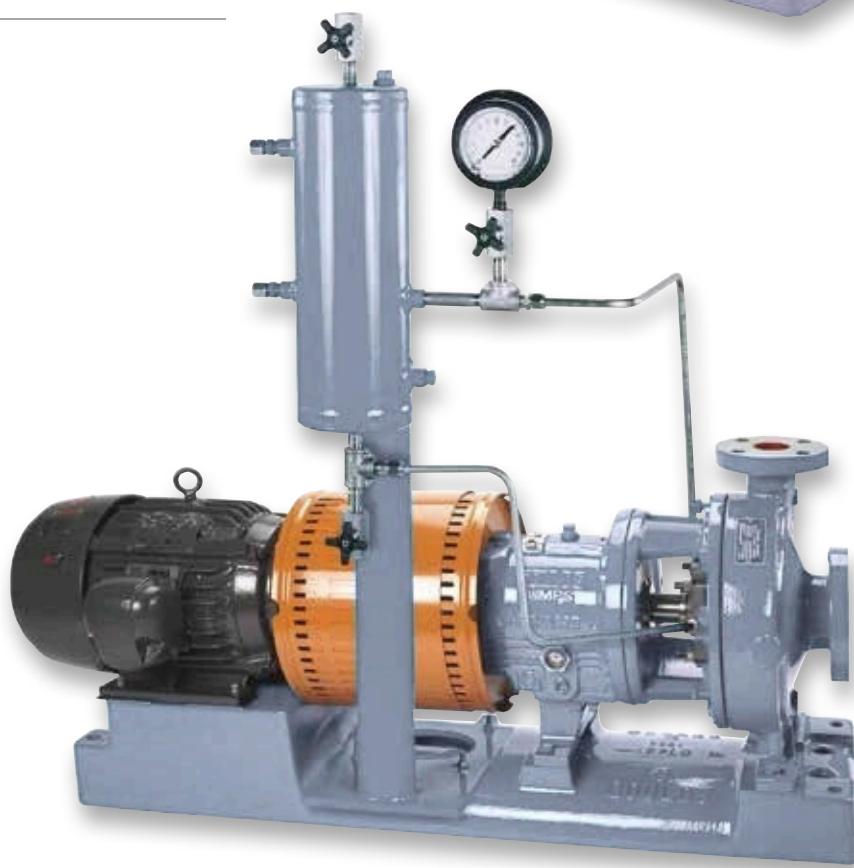
NM 3196 i-FRAME
Non-Metallic
Process Pumps

Options

Goulds Pumps offers a complete range of pump mounting systems to meet plant requirements; make installation and maintenance easier.

Seal Flush Plans

All ANSI B73.1 seal flush and cooling plans are available to control emission levels and meet seal installation requirements of user preference.


CPI PLAN 7311

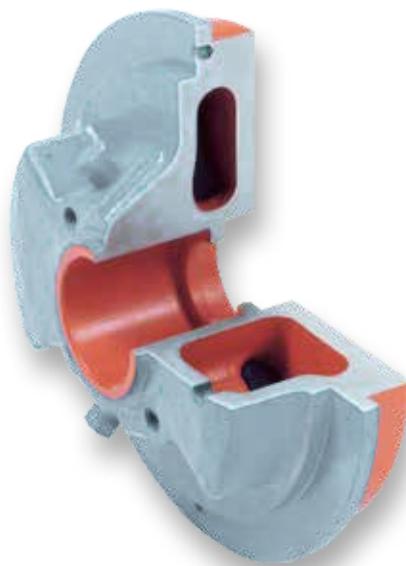
By-pass flush lubricates single seal faces.

CPI PLAN 7353

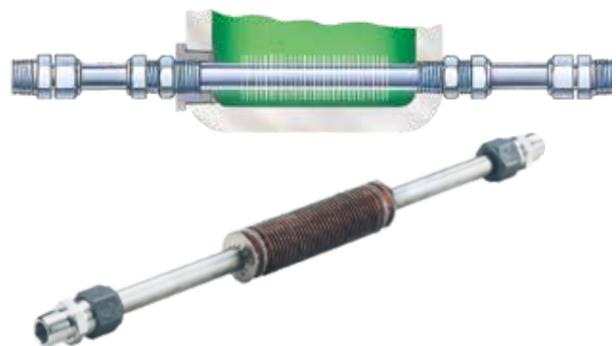
Pressurized circulation lubricates double seal faces.

High and Low Temperature Capability

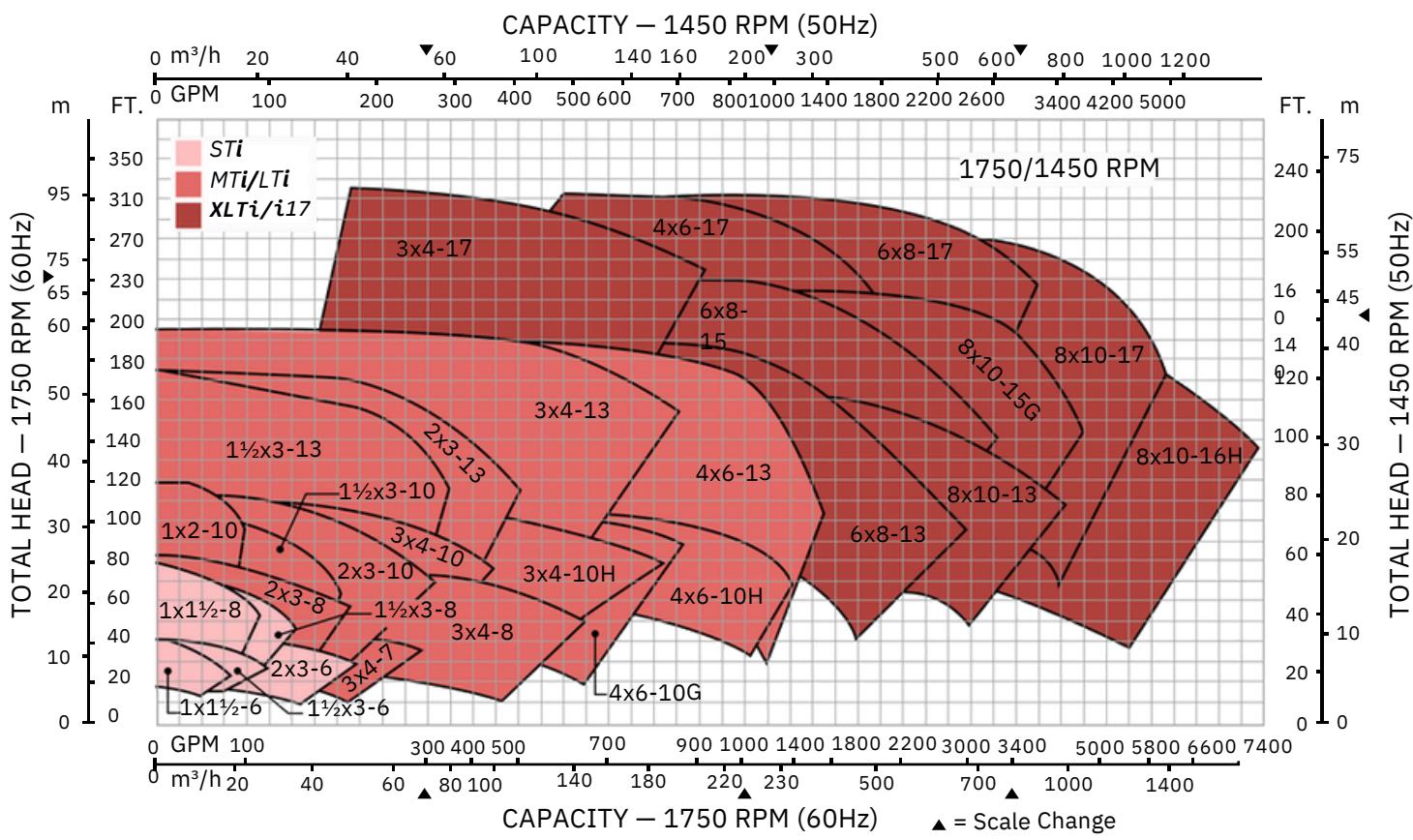
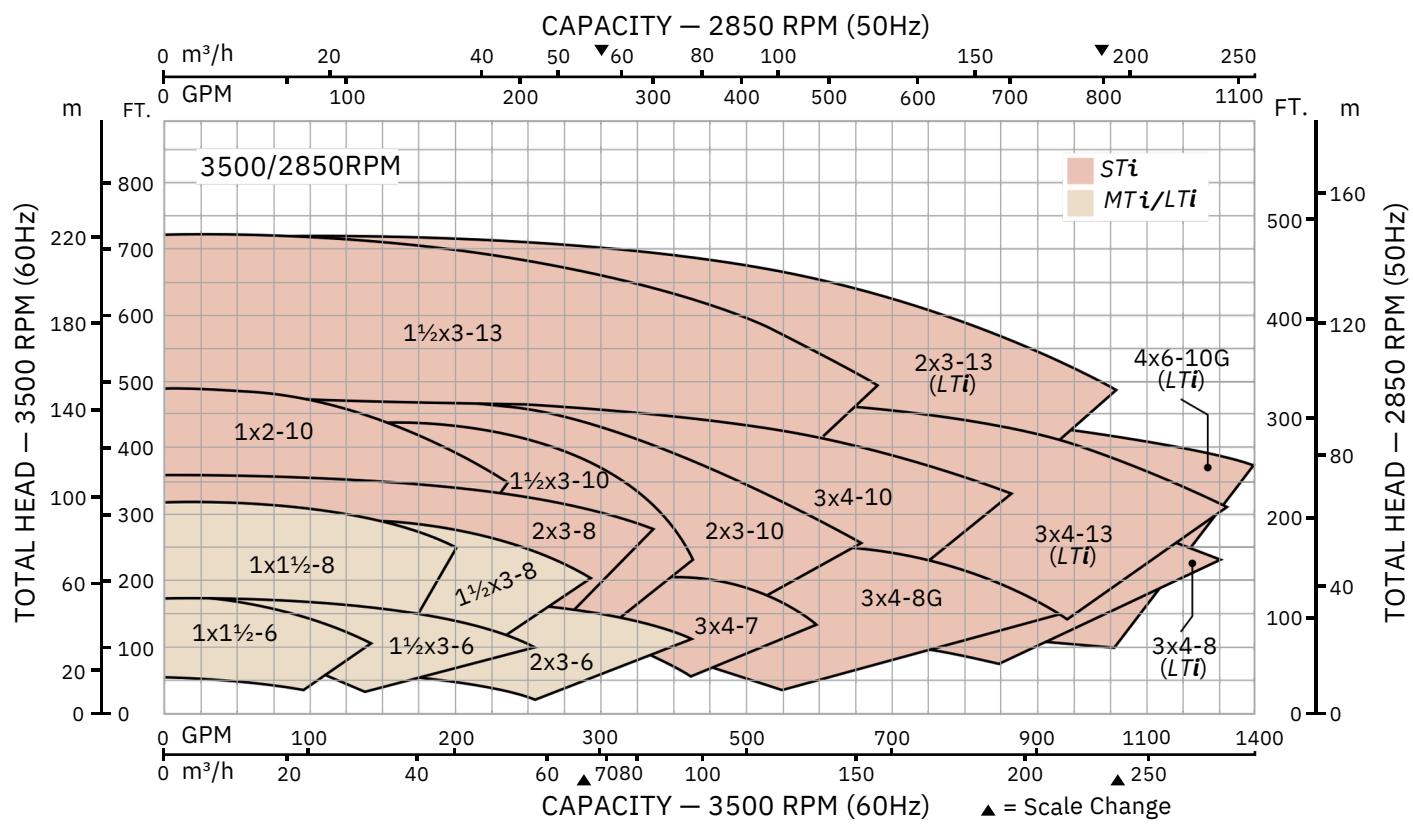
Options are readily available for high and low temperature applications or where pump age temperature must be controlled.


HEAT JACKET

Economical clamp-on jacket provides practical method of heating or cooling the casing. Excellent heat transfer characteristics. Easy to install or remove for pump servicing.


JACKETED SEAL CHAMBER

Maintains proper temperature control of sealing environment. Ideal for maintaining temperature for services such as molten sulphur and polymerizing liquids. Available in BigBore and TaperBore® designs.

BEARING FRAME FINNED COOLER

Directly cool oil for lower bearing operating temperature. Requires minimum cooling water. Corrosion resistant construction. Recommended for temperatures over 350°F (177°C) when using conventional oil. When synthetic oil is used, pump can run up to 450°F without cooling. Above 450° add for high temperature option.

Hydraulic Coverage

Construction Details

		STI	MTI	LTI	XLTI / i-17
Shaft	Diameter at Impeller	.75 (19)	1 (25)	1.25 (32)	1.5 (38)
	Diameter in Stuffing Box/Seal Chamber (Less Sleeve) (With Sleeve)	1.375 (35) 1.125 (29)	1.75 (45) 1.5 (38)	2.125 (54) 1.875 (48)	2.5 (64) 2 (51)*
	Diameter Between Bearings	1.5 (38)	2.125 (54)	2.5 (64)	3.125 (79)
	Diameter at Coupling	.875 (22)	1.125 (29)	1.875 (48)	2.375 (60)
	Overhang	6.125 (156)	8.375 (213)	8.375 (213)	9.969 (253)
	Maximum Shaft Deflection			0.002 (0.05)	
	Shaft Deflection Index (L ³ /D ⁴) (With Sleeve) (Less Sleeve)	143 64	116 63	48 29	62 25
Sleeve	O.D. thru Stuffing Box/Seal Chamber	1.375 (35)	1.75 (45)	2.125 (54)	2.5 (64)*
Bearings	Radial	6207	6309	6311	6313
	Thrust	3306	3309	7310	3313
	Bearing Span	4.125 (105)	6.75 (171)	6.875 (164)	9.25 (235)
BigBore™ Seal Chamber	Bore	2.875 (73)	3.5 (89)	3.875 (98)	4.75 (120)*
	Bore	2 (51)	2.5 (64)	2.875 (73)	3.375 (86)*
Stuffing Box	HP (kW) per 100 RPM	1.1 (.82)	3.4 (2.6)	5.6 (4.2)	14 (10.5)**
Power Limits	Maximum Liquid Temperature -				
Temperature	Oil/Grease Lubrication without Cooling			350°F (177°C)	
	Maximum Liquid Temperature -				
	Oil Lubrication with High Temp. Option			700°F (370°C)	
Casing				.125 (3)	

* 17 inch sizes have 2 3/4 inch (57) shaft diameters in stuffing box/seal chamber with sleeve. Shaft sleeve O.D. is 2 3/4 inches (70) for packing and 2 1/2 inches (64) for mechanical seals. Seal chamber bore is 4 3/4 inches (121). Stuffing box bore is 35/8 inches (92).

** 17 inch sizes power limit per 100 RPM is 20 HP (15kW).

Process Industry Practices (PIP) Compliance


The standard design features of Goulds 3196 (ANSI B73.1M) and 3996 (ANSI B73.2M) pumps meet ASME/ANSI standards. In addition, both models can be manufactured to comply with PIP Specifications for application of horizontal and vertical in-line ANSI process pumps.

Model 3196 meets B73.1M and RESP73H

Model 3996 meets B73.2M and RESP73V

Other Features For Safety & Reliability

C-FACE ADAPTER
i-FRAME power ends accommodate optional C-face motor adapter – simplifies pump/motor alignment.

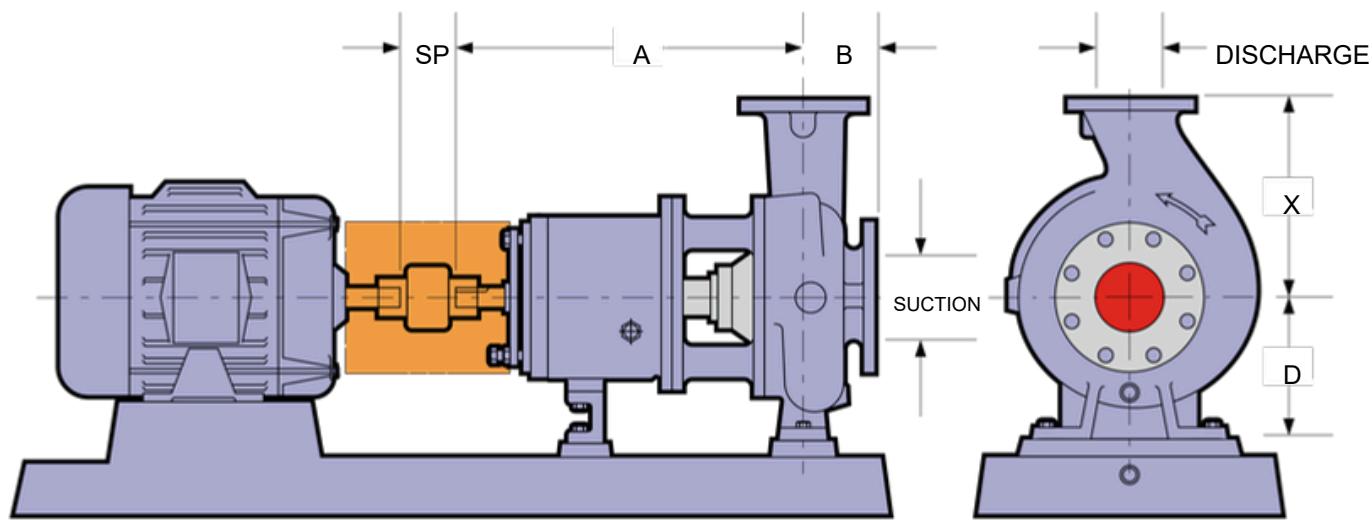
CENTERLINES-MOUNTED CASING
For high temperature services (500° to 700° F/260° to 370° C).

ANSICOUPLINGGUARD
Meets all requirements of ANSI B15.1 specifications.

SHAFTGUARD
When a guard around all rotating shaft parts is required.

Part List and Materials of Construction

Item Number	Part Name	Material						
		Ductile Iron	316SS	CD4MCu	Alloy 20	Monel	Nickel	Hastelloy B&C
100	Casing	Ductile Iron	316SS	CD4MCu	Alloy 20	Monel	Nickel	Hastelloy
101	Impeller	Ductile Iron	316SS	CD4MCu	Alloy 20	Monel	Nickel	Hastelloy
105	Lantern Ring							Glass-Filled PTFE
106	Stuffing Box Packing							PTFE Impregnated Fibers
108	Frame Adapter							Ductile Iron
112A	Thrust Bearing							Double Row Angular Contact**
122	Shaft - Less Sleeve (Optional)		316SS		Alloy 20	Monel	Nickel	Hastelloy
122	Shaft - With Sleeve		SAE4140					316SS
126	Shaft Sleeve	316SS		Alloy 20		Monel	Nickel	Hastelloy
136	Bearing Locknut and Lockwasher							Titanium
168A	Radial Bearing							Steel
184	Stuffing Box Cover (Packed Box)							Single row Deep Groove
184	Seal Chamber (Mechanical Seal)	Ductile Iron	316SS	CD4MCu	Alloy 20	Monel	Nickel	Hastelloy
228	Bearing Frame	Ductile Iron	316SS	CD4MCu	Alloy 20	Monel	Nickel	Hastelloy
250	Gland							Cast Iron (Ductile Iron for STi Group)
262	Repeller/Sleeve (Dynamic Seal Option)		316SS		Alloy 20	Monel	Nickel	Hastelloy
264	Gasket, Cover-to-Backplate (Dynamic Seal)		CD4MCu		Alloy 20	Monel	Nickel	Hastelloy
370H	Stud/Nut, Cover-to-Adapter							PTFE
319	Oil Sight Glass							304SS
332A	INPRO® VB-XX-D Labyrinth Oil Seal (Outboard)							Glass/Steel
333A	INPRO® VB-XX-D Labyrinth Oil Seal (inboard)							Stainless Steel/Bronze
351	Casing Gasket							Stainless Steel/Bronze
358	Casing Drain Plug (Optional)							Aramid Fiber with EPDM Rubber
360F	Gasket, Frame-to-Adapter	Steel	316SS		Alloy 20	Monel	Nickel	Hastelloy
360C	Gasket, Bearing End Cover							Buna
370	Cap Screw, Adapter-to-Casing							Cellulose Fiber with Binder
412A	O-ring, Impeller							Steel
418	Jacking Bolt							Glass-Filled PTFE
424	Backplate (Dynamic Seal Option)							304SS
469B	Dowel Pin, Frame-to-Adapter							
496	O-ring, Bearing Housing	Ductile Iron	316SS	CD4MCu	Alloy 20	Monel	Nickel	Hastelloy
								Titanium
								Steel
								Buna Rubber


**LTi Power End features standard Duplex Angular Contact: Optional STi, MTi, XLT-i
 Other Alloys Available: 316L, 317, 317L, 254SMO, Zirconium, etc.

Modular Interchangeability

Power Adapter End	Stuffing Box/Seal Chamber	Impeller Casing	Size	Power Adapter End	Stuffing Box/Seal Chamber	Impeller	Casing	Size
STi Max BHP-40 HP (30 kW)			1x1½-6	MTi Max BHP-122 HP (91 kW)				3x4-7
			1½x3-6	LTi Max BHP-200 HP (149 kW)				2x3-8
			2x3-6					3x4-8
			1x1½-8					3x4-8G
			1½x3-8					1x2-10
XLTi Max BHP-250 HP (187 kW)			6x8-13	MTi				1½x3-10
i-17 Max BHP-350 HP (261 kW)			8x10-13					2x3-10
			6x8-15					3x4-10
			6x8-15N					3x4-10H
			8x10-15					4x6-10G
			8x10-15G					4x6-10H
			8x10-16H*	LTi				1½x3-13
			3x4-17*					2x3-13
			4x6-17*					3x4-13
			6x8-17*					4x6-13
			8x10-17*					

*Uses 350 BHP shaft.

Dimensions

DIMENSIONS										
Group	Pump Size	ANSI Designation	Discharge Size	Suction Size	X	A	B	D	SP	Bare Pump Weight Lbs. (kg)
STi	1x1½-6	AA	1	1½	6.5 (165)	13.5 (343)	4 (102)	5.25 (133)	3.75 (95)	84 (38)
	1½x3-6	AB	1½	3						92 (42)
	2x3-6	AC	2	3						95 (43)
	1x1½-8	AA	1	1½						100 (45)
	1½x3-8	AB	1½	3						108 (49)
	3x4-7	A70	3	4						220 (100)
MTi/LTi	2X3-8	A60	2	3	11 (280)	19.5 (495)	4 (102)	8.25 (210)	3.75 (95)	220 (100)
	3X4-8	A70	3	4	9.5 (242)					220 (91)
	3X4-8G	A70	3	4	11 (280)					220 (100)
	1X2-10	A05	1	2	8.5 (216)					200 (91)
	1½X3-10	A50	1½	3	11 (280)					220 (100)
	2X3-10	A60	2	3	9.5 (242)					230 (104)
	3X4-10	A70	3	4	8.25 (210)					265 (120)
	3X4-10H	A40	3	4	11 (280)					275 (125)
	4X6-10G	A80	4	6	12.5 (318)					305 (138)
	4X6-10H	A80	4	6	13.5 (343)					245 (111)
	1½X3-13	A20	1½	3	10.5 (267)					275 (125)
	2X3-13	A30	2	3	11.5 (292)					330 (150)
	3X4-13	A40	3	4	12.5 (318)					405 (184)
	4X6-13	A80	4	6	13.5 (343)					560 (254)
	6X8-13	A90	6	8	16 (406)					670 (304)
XLTi/i-17	8X10-13	A100	8	10	18 (457)	27.875 (708)	6 (152)	14.5 (368)	5.25 (133)	610 (277)
	6X8-15	A110	6	8	19 (483)					610 (277)
	6X8-15N	A110	6	8	16 (406)					740 (336)
	8X10-15	A120	8	10	16 (406)					710 (322)
	8X10-15G	A120	8	10	18 (457)					850 (385)
	8X10-16H	A120	8	10	19 (483)					650 (295)
	4X6-17	A105	4	6	16 (406)					457 (207)
	3x4-17	—	3	4	16 (406)					730 (331)
	6X8-17	A110	6	8	18 (457)					830 (376)
	8X10-17	A120	8	10	19 (483)					

All dimensions in inches and (mm). Not to be used for construction.